Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(5): 2157-2173, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38340344

RESUMO

Environmentally regulated gene expression is critical for bacterial survival under stress conditions, including extremes in temperature, osmolarity and nutrient availability. Here, we dissect the thermo- and osmo-responsory behavior of the transcriptional repressor H-NS, an archetypal nucleoid-condensing sensory protein, ubiquitous in enterobacteria that infect the mammalian gut. Through experiments and thermodynamic modeling, we show that H-NS exhibits osmolarity, temperature and concentration dependent self-association, with a highly polydisperse native ensemble dominated by monomers, dimers, tetramers and octamers. The relative population of these oligomeric states is determined by an interplay between dimerization and higher-order oligomerization, which in turn drives a competition between weak homo- versus hetero-oligomerization of protein-protein and protein-DNA complexes. A phosphomimetic mutation, Y61E, fully eliminates higher-order self-assembly and preserves only dimerization while weakening DNA binding, highlighting that oligomerization is a prerequisite for strong DNA binding. We further demonstrate the presence of long-distance thermodynamic connectivity between dimerization and oligomerization sites on H-NS which influences the binding of the co-repressor Cnu, and switches the DNA binding mode of the hetero-oligomeric H-NS:Cnu complex. Our work thus uncovers important organizational principles in H-NS including a multi-layered thermodynamic control, and provides a molecular framework broadly applicable to other thermo-osmo sensory proteins that employ similar mechanisms to regulate gene expression.


Assuntos
Proteínas de Bactérias , Proteínas de Ligação a DNA , Enterobacteriaceae , Proteínas de Bactérias/metabolismo , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Enterobacteriaceae/metabolismo , Temperatura , Fatores de Transcrição/metabolismo
2.
ACS Bio Med Chem Au ; 4(1): 53-67, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38404745

RESUMO

The extent and molecular basis of interdomain communication in multidomain proteins, central to understanding allostery and function, is an open question. One simple evolutionary strategy could involve the selection of either conflicting or favorable electrostatic interactions across the interface of two closely spaced domains to tune the magnitude of interdomain connectivity. Here, we study a bilobed domain FF34 from the eukaryotic p190A RhoGAP protein to explore one such design principle that mediates interdomain communication. We find that while the individual structural units in wild-type FF34 are marginally coupled, they exhibit distinct intrinsic stabilities and low cooperativity, manifesting as slow folding. The FF3-FF4 interface harbors a frustrated network of highly conserved electrostatic interactions-a charge troika-that promotes the population of multiple, decoupled, and non-native structural modes on a rugged native landscape. Perturbing this network via a charge-reversal mutation not only enhances stability and cooperativity but also dampens the fluctuations globally and speeds up the folding rate by at least an order of magnitude. Our work highlights how a conserved but nonoptimal network of interfacial electrostatic interactions shapes the native ensemble of a bilobed protein, a feature that could be exploited in designing molecular systems with long-range connectivity and enhanced cooperativity.

3.
Biochemistry ; 62(20): 2982-2996, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37788430

RESUMO

Paralogous proteins confer enhanced fitness to organisms via complex sequence-conformation codes that shape functional divergence, specialization, or promiscuity. Here, we dissect the underlying mechanism of promiscuous binding versus partial subfunctionalization in paralogues by studying structurally identical acyl-CoA binding proteins (ACBPs) from Plasmodium falciparum that serve as promising drug targets due to their high expression during the protozoan proliferative phase. Combining spectroscopic measurements, solution NMR, SPR, and simulations on two of the paralogues, A16 and A749, we show that minor sequence differences shape nearly every local and global conformational feature. A749 displays a broader and heterogeneous native ensemble, weaker thermodynamic coupling and cooperativity, enhanced fluctuations, and a larger binding pocket volume compared to A16. Site-specific tryptophan probes signal a graded reduction in the sampling of substates in the holo form, which is particularly apparent in A749. The paralogues exhibit a spectrum of binding affinities to different acyl-CoAs with A749, the more promiscuous and hence the likely ancestor, binding 1000-fold stronger to lauroyl-CoA under physiological conditions. We thus demonstrate how minor sequence changes modulate the extent of long-range interactions and dynamics, effectively contributing to the molecular evolution of contrasting functional repertoires in paralogues.


Assuntos
Inibidor da Ligação a Diazepam , Proteínas , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/química , Inibidor da Ligação a Diazepam/metabolismo , Proteínas/metabolismo , Conformação Molecular , Acil Coenzima A/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo
4.
Methods ; 218: 198-209, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37607621

RESUMO

Over 40% of eukaryotic proteomes and 15% of bacterial proteomes are predicted to be intrinsically disordered based on their amino acid sequence. Intrinsically disordered proteins (IDPs) exist as heterogeneous ensembles of interconverting conformations and pose a challenge to the structure-function paradigm by apparently functioning without possessing stable structural elements. IDPs play a prominent role in biological processes involving extensive intermolecular interaction networks and their inherently dynamic nature facilitates their promiscuous interaction with multiple structurally diverse partner molecules. NMR spectroscopy has made pivotal contributions to our understanding of IDPs because of its unique ability to characterize heterogeneity at atomic resolution. NMR methods such as Chemical Exchange Saturation Transfer (CEST) and relaxation dispersion have enabled the detection of 'invisible' excited states in biomolecules which are transiently and sparsely populated, yet central for function. Here, we develop a 1Hα CEST pulse sequence which overcomes the resonance overlap problem in the 1Hα-13Cα plane of IDPs by taking advantage of the superior resolution in the 1H-15N correlation spectrum. In this sequence, magnetization is transferred after 1H CEST using a triple resonance coherence transfer pathway from 1Hα (i) to 1HN(i + 1) during which the 15N(t1) and 1HN(t2) are frequency labelled. This approach is integrated with spin state-selective CEST for eliminating spurious dips in CEST profiles resulting from dipolar cross-relaxation. We apply this sequence to determine the excited state 1Hα chemical shifts of the intrinsically disordered DNA binding domain (CytRN) of the bacterial cytidine repressor (CytR), which transiently acquires a functional globally folded conformation. The structure of the excited state, calculated using 1Hα chemical shifts in conjunction with other excited state NMR restraints, is a three-helix bundle incorporating a helix-turn-helix motif that is vital for binding DNA.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteoma , Sequência de Aminoácidos , Citidina , Eucariotos
5.
Sci Adv ; 9(26): eadh4591, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37379390

RESUMO

A longstanding goal in the field of intrinsically disordered proteins (IDPs) is to characterize their structural heterogeneity and pinpoint the role of this heterogeneity in IDP function. Here, we use multinuclear chemical exchange saturation (CEST) nuclear magnetic resonance to determine the structure of a thermally accessible globally folded excited state in equilibrium with the intrinsically disordered native ensemble of a bacterial transcriptional regulator CytR. We further provide evidence from double resonance CEST experiments that the excited state, which structurally resembles the DNA-bound form of cytidine repressor (CytR), recognizes DNA by means of a "folding-before-binding" conformational selection pathway. The disorder-to-order regulatory switch in DNA recognition by natively disordered CytR therefore operates through a dynamical variant of the lock-and-key mechanism where the structurally complementary conformation is transiently accessed via thermal fluctuations.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Dobramento de Proteína , Ligação Proteica , Espectroscopia de Ressonância Magnética , DNA/química , Conformação Proteica
6.
Nat Commun ; 14(1): 128, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624096

RESUMO

G-protein-coupled receptors (GPCRs) are ubiquitous integral membrane proteins involved in diverse cellular signaling processes. Here, we carry out a large-scale ensemble thermodynamic study of 45 ligand-free GPCRs employing a structure-based statistical mechanical framework. We find that multiple partially structured states co-exist in the GPCR native ensemble, with the TM helices 1, 6 and 7 displaying varied folding status, and shaping the conformational landscape. Strongly coupled residues are anisotropically distributed, accounting for only 13% of the residues, illustrating that a large number of residues are inherently dynamic. Active-state GPCRs are characterized by reduced conformational heterogeneity with altered coupling-patterns distributed throughout the structural scaffold. In silico alanine-scanning mutagenesis reveals that extra- and intra-cellular faces of GPCRs are coupled thermodynamically, highlighting an exquisite structural specialization and the fluid nature of the intramolecular interaction network. The ensemble-based perturbation methodology presented here lays the foundation for understanding allosteric mechanisms and the effects of disease-causing mutations in GCPRs.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Modelos Moleculares , Receptores Acoplados a Proteínas G/metabolismo , Estrutura Secundária de Proteína , Ligantes , Termodinâmica , Conformação Proteica
7.
Molecules ; 27(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36557898

RESUMO

The mutations G170R and I244T are the most common disease cause in primary hyperoxaluria type I (PH1). These mutations cause the misfolding of the AGT protein in the minor allele AGT-LM that contains the P11L polymorphism, which may affect the folding of the N-terminal segment (NTT-AGT). The NTT-AGT is phosphorylated at T9, although the role of this event in PH1 is unknown. In this work, phosphorylation of T9 was mimicked by introducing the T9E mutation in the NTT-AGT peptide and the full-length protein. The NTT-AGT conformational landscape was studied by circular dichroism, NMR, and statistical mechanical methods. Functional and stability effects on the full-length AGT protein were characterized by spectroscopic methods. The T9E and P11L mutations together reshaped the conformational landscape of the isolated NTT-AGT peptide by stabilizing ordered conformations. In the context of the full-length AGT protein, the T9E mutation had no effect on the overall AGT function or conformation, but enhanced aggregation of the minor allele (LM) protein and synergized with the mutations G170R and I244T. Our findings indicate that phosphorylation of T9 may affect the conformation of the NTT-AGT and synergize with PH1-causing mutations to promote aggregation in a genotype-specific manner. Phosphorylation should be considered a novel regulatory mechanism in PH1 pathogenesis.


Assuntos
Polimorfismo Genético , Agregados Proteicos , Humanos , Fosforilação , Mutação , Genótipo , Transaminases/metabolismo
8.
Sci Rep ; 12(1): 17200, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229482

RESUMO

Phosphoglycerate kinase has been a model for the stability, folding cooperativity and catalysis of a two-domain protein. The human isoform 1 (hPGK1) is associated with cancer development and rare genetic diseases that affect several of its features. To investigate how mutations affect hPGK1 folding landscape and interaction networks, we have introduced mutations at a buried site in the N-terminal domain (F25 mutants) that either created cavities (F25L, F25V, F25A), enhanced conformational entropy (F25G) or introduced structural strain (F25W) and evaluated their effects using biophysical experimental and theoretical methods. All F25 mutants folded well, but showed reduced unfolding cooperativity, kinetic stability and altered activation energetics according to the results from thermal and chemical denaturation analyses. These alterations correlated well with the structural perturbation caused by mutations in the N-terminal domain and the destabilization caused in the interdomain interface as revealed by H/D exchange under native conditions. Importantly, experimental and theoretical analyses showed that these effects are significant even when the perturbation is mild and local. Our approach will be useful to establish the molecular basis of hPGK1 genotype-phenotype correlations due to phosphorylation events and single amino acid substitutions associated with disease.


Assuntos
Fosfoglicerato Quinase/metabolismo , Dobramento de Proteína , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Fosfoglicerato Quinase/genética , Desnaturação Proteica , Termodinâmica
9.
iScience ; 25(10): 105181, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36248733

RESUMO

Mutational effects in globular proteins exhibit an exponential-like decreasing dependence on distance from the mutated site, suggestive of long-range modulation of structural-thermodynamic features. Here, we extract the physical origins of this pattern by employing a statistical-mechanical model to construct conformational ensembles of three archetypal proteins. Through large-scale in silico alanine-scanning mutagenesis, we show that inter-residue differential coupling free energies, which are characteristic ensemble thermodynamic properties, follow a similar exponential distance dependence with the effects felt until ∼15-20 Å from the mutated site. From the perspective of an ensemble-averaged structure, this feature arises via long-range reorganization of the interaction network on mutations which is more significant for charged residues compared to hydrophobic residues. Our work highlights how subtle alterations in the microscopic distribution of states manifest as a macroscopic distance dependence, the physical origins of mutation-induced dynamic allostery, and the necessity to consider the global intra-protein interaction network to understand mutational outcomes.

10.
J Phys Chem B ; 126(33): 6136-6147, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35969476

RESUMO

The intrinsically disordered DNA-binding domain of cytidine repressor (CytR-DBD) folds in the presence of target DNA and regulates the expression of multiple genes in E. coli. To explore the conformational rearrangements in the unbound state and the target recognition mechanisms of CytR-DBD, we carried out single-molecule Förster resonance energy transfer (smFRET) measurements. The smFRET data of CytR-DBD in the absence of DNA show one major and one minor population assignable to an expanded unfolded state and a compact folded state, respectively. The population of the folded state increases and decreases upon titration with salt and denaturant, respectively, in an apparent two-state manner. The peak FRET efficiencies of both the unfolded and folded states change continuously with denaturant concentration, demonstrating the intrinsic flexibility of the DNA-binding domain and the deviation from a strict two-state transition. Remarkably, the CytR-DBD exhibits a compact structure when bound to both the specific and nonspecific DNA; however, the peak FRET efficiencies of the two structures are slightly but consistently different. The observed conformational heterogeneity highlights the potential structural changes required for CytR to bind variably spaced operator sequences.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Transferência Ressonante de Energia de Fluorescência , Proteínas Repressoras/química , Espectrometria de Fluorescência
11.
Antioxidants (Basel) ; 11(6)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35740007

RESUMO

Allosterism is a common phenomenon in protein biochemistry that allows rapid regulation of protein stability; dynamics and function. However, the mechanisms by which allosterism occurs (by mutations or post-translational modifications (PTMs)) may be complex, particularly due to long-range propagation of the perturbation across protein structures. In this work, we have investigated allosteric communication in the multifunctional, cancer-related and antioxidant protein NQO1 by mutating several fully buried leucine residues (L7, L10 and L30) to smaller residues (V, A and G) at sites in the N-terminal domain. In almost all cases, mutated residues were not close to the FAD or the active site. Mutations L→G strongly compromised conformational stability and solubility, and L30A and L30V also notably decreased solubility. The mutation L10A, closer to the FAD binding site, severely decreased FAD binding affinity (≈20 fold vs. WT) through long-range and context-dependent effects. Using a combination of experimental and computational analyses, we show that most of the effects are found in the apo state of the protein, in contrast to other common polymorphisms and PTMs previously characterized in NQO1. The integrated study presented here is a first step towards a detailed structural-functional mapping of the mutational landscape of NQO1, a multifunctional and redox signaling protein of high biomedical relevance.

12.
J Phys Chem Lett ; 13(13): 3112-3120, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35357183

RESUMO

We investigate the conformational properties of the intrinsically disordered DNA-binding domain of CytR in the presence of the polymeric crowder polyethylene glycol (PEG). Integrating circular dichroism, nuclear magnetic resonance, and single-molecule Förster resonance energy transfer measurements, we demonstrate that disordered CytR populates a well-folded minor conformation in its native ensemble, while the unfolded ensemble collapses and folds with an increase in crowder density independent of the crowder size. Employing a statistical-mechanical model, the effective reduction in the accessible conformational space of a residue in the unfolded state is estimated to be 10% at 300 mg/mL PEG8000, relative to dilute conditions. The experimentally consistent PEG-temperature phase diagram thus constructed reveals that entropic effects can stabilize disordered CytR by 10 kJ mol-1, driving the equilibrium toward folded conformations under physiological conditions. Our work highlights the malleable conformational landscape of CytR, the presence of a folded conformation in the disordered ensemble, and proposes a scaling relation for quantifying excluded volume effects on protein stability.


Assuntos
Dobramento de Proteína , Proteínas , Dicroísmo Circular , Entropia , Conformação Molecular , Conformação Proteica
13.
ACS Cent Sci ; 8(2): 282-293, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35233459

RESUMO

The functioning of proteins is intimately tied to their fluctuations in the native ensemble. The structural-energetic features that determine fluctuation amplitudes and hence the shape of the underlying landscape, which in turn determine the magnitude of the functional output, are often confounded by multiple variables. Here, we employ the FF1 domain from human p190A RhoGAP protein as a model system to uncover the molecular basis for phosphorylation of a buried tyrosine, which is crucial to the transcriptional activity associated with transcription factor TFII-I. Combining spectroscopy, calorimetry, statistical-mechanical modeling, molecular simulations, and in vitro phosphorylation assays, we show that the FF1 domain samples a diverse array of conformations in its native ensemble, some of which are phosphorylation-competent. Upon eliminating unfavorable charge-charge interactions through a single charge-reversal (K53E) or charge-neutralizing (K53Q) mutation, we observe proportionately lower phosphorylation extents due to the altered structural coupling, damped equilibrium fluctuations, and a more compact native ensemble. We thus establish a conformational selection mechanism for phosphorylation in the FF1 domain with K53 acting as a "gatekeeper", modulating the solvent exposure of the buried tyrosine. Our work demonstrates the role of unfavorable charge-charge interactions in governing functional events through the modulation of native ensemble characteristics, a feature that could be prevalent in ordered protein domains.

14.
Methods Mol Biol ; 2376: 373-386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34845621

RESUMO

Mutational perturbations of protein structures, i.e., phi-value analysis, are commonly employed to probe the extent of involvement of a particular residue in the rate-determining step(s) of folding. This generally involves the measurement of folding thermodynamic parameters and kinetic rate constants for the wild-type and mutant proteins. While computational approaches have been reasonably successful in understanding and predicting the effect of mutations on folding thermodynamics, it has been challenging to explore the same on kinetics due to confounding structural, energetic, and dynamic factors. Accordingly, the frequent observation of fractional phi-values (mean of ~0.3) has resisted a precise and consistent interpretation. Here, we describe how to construct, parameterize, and employ a simple one-dimensional free energy surface model that is grounded in the basic tenets of the energy landscape theory to predict and simulate the effect of mutations on folding kinetics. As a proof of principle, we simulate one-dimensional free energy profiles of 806 mutations from 24 different proteins employing just the experimental destabilization as input, reproduce the relative unfolding activation free energies with a correlation of 0.91, and show that the mean phi-value of 0.3 essentially corresponds to the extent of stabilization energy gained at the barrier top while folding.


Assuntos
Dobramento de Proteína , Cinética , Mutação , Proteínas/genética , Termodinâmica
15.
Curr Res Struct Biol ; 3: 257-267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34704074

RESUMO

Protein sequences and structures evolve by satisfying varied physical and biochemical constraints. This multi-level selection is enabled not just by the patterning of amino acids on the sequence, but also via coupling between residues in the native structure. Here, we employ an energetically detailed statistical mechanical model with millions of microstates to extract such long-range structural correlations, i.e. thermodynamic coupling free energies, from a diverse family of protein structures. We find that despite the intricate and anisotropic distribution of coupling patterns, the majority of residues (>70%) are only marginally coupled contributing to functional motions and catalysis. Physical origins of 'sectors', determinants of native ensemble heterogeneity in extant, ancient and designed proteins, and the basis for allostery emerge naturally from coupling free energies. The statistical framework highlights how evolutionary selection and optimization occur at the level of global interaction network for a given protein fold impacting folding, function, and allosteric outputs.

16.
J Mol Biol ; 433(24): 167325, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34695380

RESUMO

Single domain proteins fold via diverse mechanisms emphasizing the intricate relationship between energetics and structure, which is a direct consequence of functional constraints and demands imposed at the level of sequence. On the other hand, elucidating the interplay between folding mechanisms and function is challenging in large proteins, given the inherent shortcomings in identifying metastable states experimentally and the sampling limitations associated with computational methods. Here, we show that free energy profiles and surfaces of large systems (>150 residues), as predicted by a statistical mechanical model, display a wide array of folding mechanisms with ubiquitous folding intermediates and heterogeneous native ensembles. Importantly, residues around the ligand binding or enzyme active site display a larger tendency to partially unfold and this manifests as intermediates or excited states along the folding coordinate in ligand binding domains, transcription repressors, and representative enzymes from all the six classes, including the SARS-CoV-2 receptor binding domain (RBD) of the spike protein and the protease Mpro. It thus appears that it is relatively easier to distill the imprints of function on the folding landscape of larger proteins as opposed to smaller systems. We discuss how an understanding of energetic-entropic features in ordered proteins can pinpoint specific avenues through which folding mechanisms, populations of partially structured states and function can be engineered.


Assuntos
Enzimas/química , Enzimas/metabolismo , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Humanos , Ligação Proteica , Domínios Proteicos , Termodinâmica
17.
J Mol Biol ; 433(24): 167321, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34687715

RESUMO

Obligate symbionts typically exhibit high evolutionary rates. Consequently, their proteins may differ considerably from their modern and ancestral homologs in terms of both sequence and properties, thus providing excellent models to study protein evolution. Also, obligate symbionts are challenging to culture in the lab and proteins from uncultured organisms must be produced in heterologous hosts using recombinant DNA technology. Obligate symbionts thus replicate a fundamental scenario of metagenomics studies aimed at the functional characterization and biotechnological exploitation of proteins from the bacteria in soil. Here, we use the thioredoxin from Candidatus Photodesmus katoptron, an uncultured symbiont of flashlight fish, to explore evolutionary and engineering aspects of protein folding in heterologous hosts. The symbiont protein is a standard thioredoxin in terms of 3D-structure, stability and redox activity. However, its folding outside the original host is severely impaired, as shown by a very slow refolding in vitro and an inefficient expression in E. coli that leads mostly to insoluble protein. By contrast, resurrected Precambrian thioredoxins express efficiently in E. coli, plausibly reflecting an ancient adaptation to unassisted folding. We have used a statistical-mechanical model of the folding landscape to guide back-to-ancestor engineering of the symbiont protein. Remarkably, we find that the efficiency of heterologous expression correlates with the in vitro (i.e., unassisted) folding rate and that the ancestral expression efficiency can be achieved with only 1-2 back-to-ancestor replacements. These results demonstrate a minimal-perturbation, sequence-engineering approach to rescue inefficient heterologous expression which may potentially be useful in metagenomics efforts targeting recent adaptations.


Assuntos
Proteínas de Bactérias/biossíntese , Peixes/microbiologia , Dobramento de Proteína , Proteínas Recombinantes/biossíntese , Vibrionaceae/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli/metabolismo , Metagenômica , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Simbiose , Tiorredoxinas/biossíntese , Tiorredoxinas/química , Vibrionaceae/genética
18.
Redox Biol ; 46: 102112, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34537677

RESUMO

The multifunctional nature of human flavoproteins is critically linked to their ability to populate multiple conformational states. Ligand binding, post-translational modifications and disease-associated mutations can reshape this functional landscape, although the structure-function relationships of these effects are not well understood. Herein, we characterized the structural and functional consequences of two mutations (the cancer-associated P187S and the phosphomimetic S82D) on different ligation states which are relevant to flavin binding, intracellular stability and catalysis of the disease-associated NQO1 flavoprotein. We found that these mutations affected the stability locally and their effects propagated differently through the protein structure depending both on the nature of the mutation and the ligand bound, showing directional preference from the mutated site and leading to specific phenotypic manifestations in different functional traits (FAD binding, catalysis and inhibition, intracellular stability and pharmacological response to ligands). Our study thus supports that pleitropic effects of disease-causing mutations and phosphorylation events on human flavoproteins may be caused by long-range structural propagation of stability effects to different functional sites that depend on the ligation-state and site-specific perturbations. Our approach can be of general application to investigate these pleiotropic effects at the flavoproteome scale in the absence of high-resolution structural models.


Assuntos
Mutação de Sentido Incorreto , NAD(P)H Desidrogenase (Quinona) , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , NAD , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Ligação Proteica , Quinonas
19.
J Phys Chem B ; 125(14): 3546-3555, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33818099

RESUMO

Native states of folded proteins are characterized by a large ensemble of conformations whose relative populations and interconversion dynamics determine the functional output. This is more apparent in transcription factors that have evolved to be inherently sensitive to small perturbations, thus fine-tuning gene expression. To explore the extent to which such functional features are imprinted on the folding landscape of transcription factor ligand-binding domains (LBDs), we characterize paralogous LBDs of the nuclear receptor (NR) family employing an energetically detailed and ensemble-based Ising-like statistical mechanical model. We find that the native ensembles of the LBDs from glucocorticoid receptor, PPAγ, and thyroid hormone receptor display a remarkable diversity in the width of the native wells, the number and nature of partially structured states, and hence the degree of conformational order. Monte Carlo simulations employing the full state representation of the ensemble highlight that many of the functional conformations coexist in equilibrium, whose relative populations are sensitive to both temperature and the strength of ligand binding. Allosteric modulation of the degree of structure at a coregulator binding site on ligand binding is shown to arise via a redistribution of populations in the native ensembles of glucocorticoid and PPAγ LBDs. Our results illustrate how functional requirements can drive the evolution of conformationally diverse native ensembles in paralogs.


Assuntos
Receptores Citoplasmáticos e Nucleares , Sítios de Ligação , Ligantes , Conformação Molecular , Conformação Proteica , Domínios Proteicos , Receptores Citoplasmáticos e Nucleares/genética
20.
Elife ; 102021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33825682

RESUMO

Aggregation of Cu-Zn superoxide dismutase (SOD1) is implicated in the motor neuron disease, amyotrophic lateral sclerosis (ALS). Although more than 140 disease mutations of SOD1 are available, their stability or aggregation behaviors in membrane environment are not correlated with disease pathophysiology. Here, we use multiple mutational variants of SOD1 to show that the absence of Zn, and not Cu, significantly impacts membrane attachment of SOD1 through two loop regions facilitating aggregation driven by lipid-induced conformational changes. These loop regions influence both the primary (through Cu intake) and the gain of function (through aggregation) of SOD1 presumably through a shared conformational landscape. Combining experimental and theoretical frameworks using representative ALS disease mutants, we develop a 'co-factor derived membrane association model' wherein mutational stress closer to the Zn (but not to the Cu) pocket is responsible for membrane association-mediated toxic aggregation and survival time scale after ALS diagnosis.


Amyotrophic lateral sclerosis, or ALS, is an incurable neurodegenerative disease in which a person slowly loses specialized nerve cells that control voluntary movement. It is not fully understood what causes this fatal disease. However, it is suspected that clumps, or aggregates, of a protein called SOD1 in nerve cells may play a crucial role. More than 140 mutations in the gene for SOD1 have been linked to ALS, with varying degrees of severity. But it is still unclear how these mutations cause SOD1 aggregation or how different mutations influence the survival rate of the disease. The protein SOD1 contains a copper ion and a zinc ion, and it is possible that mutations that affect how these two ions bind to SOD1 influences the severity of the disease. To investigate this, Sannigrahi, Chowdhury, Das et al. genetically engineered mutants of the SOD1 protein which each contain only one metal ion. Experiments on these mutated proteins showed that the copper ion is responsible for the protein's role in neutralizing harmful reactive molecules, while the zinc ion stabilizes the protein against aggregation. Sannigrahi et al. found that when the zinc ion was removed, the SOD1 protein attached to a structure inside the cell called the mitochondria and formed toxic aggregates. Sannigrahi et al. then used these observations to build a computational model that incorporated different mutations that have been previously associated with ALS. The model suggests that mutations close to the site where zinc binds to the SOD1 protein increase disease severity and shorten survival time after diagnosis. This model was then experimentally validated using two disease variants of ALS that have mutations close to the sites where zinc or copper binds. These findings still need to be tested in animals and humans to see if these mechanisms hold true in a multicellular organism. This discovery could help design new ALS treatments that target the zinc binding site on SOD1 or disrupt the protein's interactions with the mitochondria.


Assuntos
Esclerose Amiotrófica Lateral/enzimologia , Membrana Celular/enzimologia , Neurônios/enzimologia , Superóxido Dismutase-1/metabolismo , Zinco/metabolismo , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/patologia , Sítios de Ligação , Linhagem Celular Tumoral , Membrana Celular/patologia , Cobre/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Neurônios/patologia , Agregados Proteicos , Agregação Patológica de Proteínas , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade , Superóxido Dismutase-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...